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Diffusion coupling between different chemical components can have significant effects on
the distribution of chemical species and can affect the physico-chemical properties of their
supporting medium. The coupling can arise from local electric charge conservation for ions
or from bound components forming compounds. We present a new lattice Boltzmann
model to account for the diffusive coupling between different chemical species. In this
model each coupling is added as an extra relaxation term in the collision operator. The
model is tested on a simple diffusion problem with two coupled components and is in
excellent agreement with the results obtained through a finite difference method. Our
model is observed to be numerically very stable and unconditional stability is shown for
a class of diffusion matrices. We further develop the model to account for advection and
show an example of application to flow in porous media in two dimensions and an example
of convection due to salinity differences. We show that our model with advection loses the
unconditional stability, but offers a straight-forward approach to complicated two-dimen-
sional advection and coupled diffusion problems.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Diffusion processes play a major role in the transport of heat and chemical components in nature. They have been shown to
play an important role in the mass balance and element distribution in lakes and oceans [24,31] as well as the composition of
minerals at the crystal scale. When multiple chemical components diffuse simultaneously, coupling of each component can
arise because of local charge conservation for the case of ions or because the different components interact through bonds
to form larger diffusing compounds. Physical and numerical models for multicomponent diffusion must account for these
coupling effects. The multicomponent diffusion problem is usually described by a diffusion matrix where the non-diagonal
terms represent the coupling interaction between the different diffusing species. The determination of the non-diagonal terms
of the diffusion matrix is difficult as it depends on the collective behavior of all diffusing species present. The general approach
used to determine these coefficients is semi-empirical, where the theoretical basis is described by Onsager’s theory for non-
equilibrium thermodynamics [28,29,25–27]. The non-diagonal terms of the diffusion matrix can be related to Onsager’s
phenomenological coefficients, however explicit relationships require experimental measurements [26,16,17,8,9].

Various multicomponent transport models have been developed for a macroscopic description of the transport equations
using finite differences [8], finite volume and finite element methods [23]. However, these methods prove to be challenging
. All rights reserved.
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when dealing with transport in complex geometries (porous media). Over the last two decades, the lattice Boltzmann (LB)
method has emerged as a powerful alternative to standard computational methods. The lattice Boltzmann method is an
extension of lattice gas automata [10] based on a mesoscale statistical description where the dynamics is reduced to the
propagation and collision of pseudo-particles [10,18,30]. Distributions of pseudo-particles relax to a local equilibrium de-
fined by the local macroscopic fields (concentration, density, velocity) through a collision operator and can be applied to
a wide range of applications such as for instance complex fluid dynamics, reaction–diffusion processes or wave propagation
[2,34]. The collision operator is generally simplified as a simple relaxation to a prescribed local equilibrium function depend-
ing on the conserved quantities. Single relaxation time models are commonly referred to as BGK dynamics [1,30]. Multi-
relaxation time models (MRT) have been developed to address some issues encountered with single relaxation BGK models.
For example, they offer additional free parameters that can be tuned to offer better stability, more accurate boundary con-
ditions and reduce numerical diffusion for advection–diffusion models [6,7,11–13]. Due to their statistical nature, lattice
Boltzmann methods offer the advantage of using simple local rules for liquid–solid boundaries (bounce-back of the local par-
ticle distribution functions) and are often very easily and efficiently parallelized. In addition LB models directly give the value
of the shear stress (hydrodynamics) or particle flux (diffusion processes) without the need to compute finite-differences.

In this study, we develop a new lattice Boltzmann approach for multicomponent diffusion based on a modification of the
standard BGK collision operator for one species. Although we do not present a version of our model with a multiple-relax-
ation time collision operator, our model can be generalized in a straight-forward way. In the next section, we introduce the
equation for multicomponent diffusion. We then present the modified BGK diffusion model to include the effect of coupling
between components. We show through a Chapman–Enskog expansion that the model converges to the correct set of mac-
roscopic equations. We then present an analysis of the stability and accuracy of the model. We modify the model further to
include the effects of advection of the supporting media (e.g. aqueous solution). The model for multicomponent diffusion in
the absence of flow is compared to the solutions obtained with a finite difference model. Finally, we present an application
for the advection-multicomponent diffusion in porous media that requires no subsequent modification of the presented
scheme to illustrate the versatility and simplicity of the method.
2. Multicomponent coupled diffusion

Multicomponent coupled diffusion is usually described in terms of a diffusion matrix representing the couplings between
the different chemical species. In one dimension, it is usually written as
@Cj

@t
¼
X

k

@

@x
Djk

@Ck

@x

� �
; ð1Þ
where the diagonal components of the matrix Djk represent the self-diffusion coefficients and the non-diagonal terms rep-
resent the coupling between element j and k. Onsager’s theory predicts that the diffusion matrix has to be symmetric, how-
ever, owing to other constraints such as charge conservation, the diffusion matrix is usually not symmetric. We develop and
validate a new lattice Boltzmann model to incorporate the diffusion coupling between different chemical components under
the assumption that the elements of the diffusion matrix Djk are constants, i.e. Djk – Djk(Cj,Ck). This limitation can easily be
avoided by adjusting the relaxation times of the BGK dynamics locally and/or at every time step [15].
3. Lattice Boltzmann scheme for coupled diffusion

The model we introduce here is based on the standard BGK collision scheme for diffusion [38,3], where the concentration
of species Cn is described by the an evolution equation for particle distribution functions f n

i

f n
i ðxþ dtei; t þ dtÞ ¼ ð1�xnÞf n

i ðx; tÞ þxnf n0
i ðx; tÞ; ð2Þ
where the superscripts n = 1, . . . ,p refer to the species and index i labels the lattice velocities ei. These velocity vectors are
such that in one time step dt, the particles can hop from their initial position x to x + dtei, still on the lattice.

Different lattices can be considered in the LB method. They are termed DdQq, where d is the space dimension and q the
number of velocity vectors. For instance the so-called D2Q5 lattice corresponds to a two-dimensional square lattice with five
velocities (rest, east, north, west and south).

For symmetry and isotropy reasons, the ei must obey
X
i

tiei ¼ 0;
X

i

tieiaeib ¼ e2
s dab;

X
i

ti ¼ 1; ð3Þ
where greek indices a and b denote the spatial components of ei. The ti’s and e2
s are positive constants which depend on the

chosen lattice. For instance, here we chose t0 = 1/3, ti–0 = 1/6 and e2
s ¼ 1=3 in the D2Q5 lattice.

In a LB approach, the standard physical quantities are given by the moments of the distribution functions fi. In diffusion
problems the density Cn is computed as
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Cn ¼
X

i

f n
i : ð4Þ
In Eq. (2), f n0
i are the so-called local equilibrium distribution functions defined as
f n0
i ¼ tiCn:
The xn’s are the inverse of the relaxation time for species n and can be chosen [38,3] so as to impose the desired diffusion
constant, according to the relation Dn ¼ e2

s dtð1=xn � 1=2Þ. An interesting result is that, in the absence of an advecting velocity
field, the diffusive flux Jn is found to satisfy
Jn ¼ 1�xn

2

� �X
i

f n
i � f n0

i

� �
ei ¼ �DnrCn: ð5Þ
The goal of this paper is to generalize Eq. (2) to the case of coupled diffusion among several species. The equation for J and
relation (1) suggest an approach to couple species by adding to Eq. (2) terms involving contributions from f k

i � f k0
i

� �
, i.e.

terms containing the gradient of density Ck. Thus, we introduce non-diagonal terms in the diffusion matrix as
f n
i ðxþ dtei; t þ dtÞ ¼ ð1�xnÞf n

i ðx; tÞ þxnf n0
i ðx; tÞ �

X
k–n

xnk f k0
i ðx; tÞ � f k

i ðx; tÞ
� �

: ð6Þ
To simplify the notation, we omit position and time when possible and we focus on the one-way coupling of species C1 with
species C2 described, respectively by the particle distributions fi and gi. The evolution of these distributions is given by
fiðxþ dtei; t þ dtÞ ¼ ð1�xf Þfiðx; tÞ þxf f 0
i ðx; tÞ �xfg g0

i ðx; tÞ � giðx; tÞ
� �

ð7Þ
and
giðxþ dtei; t þ dtÞ ¼ ð1�xgÞgiðx; tÞ þxgg0
i ðx; tÞ �xgf f 0

i ðx; tÞ � fiðx; tÞ
� �

: ð8Þ
The equilibrium distributions are given, as before, by
f 0
i ¼ tiC1 and g0

i ¼ tiC2: ð9Þ
We now show that, in the continuous limit (mesh size and time step going to zero), the two systems of Eqs. (7) and (8) are
equivalent to Eq. (1). We use the multiscale Chapman–Enskog expansion (see for instance Frisch et al. [10], Chopard and Droz
[2] for more details).

Assuming that the fi are smooth functions, and that time and space scale diffusively (x2 � t), a second order Taylor expan-
sion in dt yields
fiðxþ dtei; t þ dtÞ ¼ fiðx; tÞ þ dt@aeiafiðx; tÞ þ dt@tfiðx; tÞ þ
d2

t

2
eiaeib@a@bfiðx; tÞ ð10Þ
and similarly for gi. Here, @a denotes the derivative with respect to spatial coordinate a and @t is the time derivative. We use
the summation convention over repeated greek indices.

The next step is to expand fi and gi in terms of the local equilibrium distribution. For the case of fi, we write
fi ¼ f 0
i þ �f

ð1Þ
i ; ð11Þ
where f ð1Þi is defined as the non-equilibrium part of the distribution and � is an expansion parameter (related to the Knudsen
number).

We expand the partial derivatives as
@t ¼ �2@
ð2Þ
t ; @a ¼ �@ð1Þa : ð12Þ
Equating Eqs. (7) and (10) and doing the same for the distributions gi, we obtain, at order Oð�Þ, the following conditions for
the non-equilibrium part of the distribution f ð1Þi and gð1Þi
�f ð1Þi ¼ �xfg

xf
gð1Þi � �

dt

xf
@ð1Þa eiaf 0

i ;

�gð1Þi ¼ �
xgf

xg
f ð1Þi � � dt

xg
@ð1Þa eiag0

i :

ð13Þ
From Eq. (7), the definition of the equilibrium distribution
X
i

fi ¼
X

i

f 0
i ¼ C1;

X
i

gi ¼
X

i

g0
i ¼ C2 ð14Þ
and using Eq. (10), we have (up to second order in �)
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0 ¼
X

i

½fiðxþ ei; t þ 1Þ � fiðx; tÞ� ¼ �
X

i

eia@
ð1Þ
a f ð0Þi þ �2

X
i

@ð1Þa eiaf ð1Þi þ @ð2Þt f 0
i þ

dt

2
@ð1Þa @

ð1Þ
b eiaeibf 0

i

� �
: ð15Þ
By the symmetry of the ei’s and the definition of f ð0Þi , we have
P

ieia@
ð1Þ
a f ð0Þi ¼ 0. Therefore, with C = (C1,C2), the symmetries of

the lattice equations (3) and (12), we obtain
@tC ¼ ��2
X

i

@ð1Þa eiaf ð1Þi

h i
� dt

e2
s

2
r2C: ð16Þ
We now define
X0
i ¼

f 0
i

g0
i

 !
; Xð1Þi ¼

f ð1Þi

gð1Þi

 !
;

M ¼
1 �xfg

xf

�xgf

xg
1

0
@

1
A; K ¼

� 1
xf

0

0 � 1
xg

 !
:

ð17Þ
Eq. (13) then read
MXð1Þi ¼ dtK@
ð1Þ
a eiaXð0Þi or Xð1Þi ¼ dtM

�1K@ð1Þa eiaXð0Þi ; ð18Þ
provided that xfxg �xfgxgf – 0. The first term of the right-hand side of Eq. (16) can thus be calculated as
�2
X

i

@ð1Þa eiaXð1Þi ¼ dtM
�1K

X
i

�2@ð1Þa @
ð1Þ
b eiaeibX0

i ; ð19Þ

¼ e2
s dtM

�1Kr2C: ð20Þ
Eq. (16) becomes
@tC ¼ �e2
s dt M�1Kþ 1

2
I

� 	
r2C � Dr2C; ð21Þ
where I is the identity matrix and D the diffusion matrix is
D ¼ e2
s dt

1 �xfg

xf

�xgf

xg
1

0
@

1
A�1 1

xf
0

0 1
xg

 !
�

1
2 0
0 1

2

 !2
64

3
75: ð22Þ
For a single component, the diffusion matrix reduces to its usual LB scalar expression
D ¼ e2
s dt

1
xf
� 1

2

� 	
: ð23Þ
The two-component model above can be easily extended to n components whose evolution is given by Eq. (6) provided the
determinant of M is not null. In this case the diffusion matrix is given by
D ¼ e2
s dt

1 �x12
x1

. . . �x1n
x1

�x21
x2

1 �x23
x2

. . .

. . . . . . . . . . . .

�xn1
xn

. . . . . . 1

0
BBBB@

1
CCCCA
�1 1

x1
0 . . . . . .

0 1
x2

0 . . .

. . . . . . . . . . . .

0 . . . . . . 1
xn

0
BBBB@

1
CCCCA�

1
2 0 . . . . . .

0 1
2 0 . . .

. . . . . . . . . . . .

0 . . . . . . 1
2

0
BBB@

1
CCCA

2
66664

3
77775: ð24Þ
This equation can be inverted to calculate the x’s from a prescribed diffusion matrix. From Eq. (21)
�K�1M ¼ 1
dte2

s
Dþ 1

2
I

� 	�1

ð25Þ
and from the definitions of M and K we get
�K�1M
h i

ij
¼

xi; if i ¼ j;

�xij; otherwise:



ð26Þ
If none of the diffusion matrix D eigenvalues are � dte2
s =2

� �
, the matrix D= dte2

s

� �
þ 1=2 can be inverted and Eqs. (25) and (26)

provide a direct relationship between the xi, xij and the diffusion matrix.
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3.1. Semi-analytical investigation of the stability and accuracy of the single and multicomponent methods

In Appendix A, we prove analytically the unconditional stability of the lattice Boltzmann single component diffusion mod-
el. This development has not yet been generalized to the multicomponent case. Therefore, here we investigate the stability
and accuracy of the LBGK for multiple components using a semi-analytical approach similar to that presented in Chopard
and Droz [2] and Ginzburg [11].

To introduce our approach we first explain it in the case of the single component case. The evolution equation (2) is writ-
ten as an algebraic system of linear equations
fout ¼ Lf in
; ð27Þ
where for a single component, using a D2Q5 lattice,
fout ¼

f out
0

..

.

f out
4

0
BBB@

1
CCCA; f in ¼

f in
0

..

.

f in
4

0
BBBB@

1
CCCCA; Lij ¼

1� 1
s þ

ti
s ; if i ¼ j;

ti
s ; otherwise:

8<
: ð28Þ
The distributions f can be written in terms of Fourier series
f inðx; tÞ ¼
X

k

AkðtÞ expðik � xÞ; ð29Þ
where the vectors Ak have the same number of elements as the distribution vectors f for each wave vector k. On a two-
dimensional lattice, the wave vectors are defined by
k ¼ 2pl=ðNdxÞ;2pm=ðNdxÞð Þ; l;m ¼ 0;1; . . . ;N � 1; ð30Þ
where N is the number of grid nodes in each dimension and dx the grid spacing. With this notation, Eq. (2) becomes
X
k

TkAkðt þ dtÞ expðik � xÞ ¼ L
X

k

AkðtÞ expðik � xÞ; ð31Þ
where Tk is a diagonal q � q matrix whose elements are
Tk½ �mn ¼
expðik � emÞ; if m ¼ n;

0; otherwise:

(
ð32Þ
We can use the orthogonality of the basis exp (ik � x) to obtain
Akðt þ dtÞ ¼ T�1
k LAkðtÞ � PkAkðtÞ: ð33Þ
If we write AkðtÞ ¼ eixktAkð0Þwe see that a solution to Eq. (33) exists provided that eixkdt is an eigenvalue kk of Pk. The relation
eixkdt ¼ kk specifies the dispersion relation between xk and the wave vector k.

Solving numerically for the eigenvalues of P, we can compare the dispersion relationship obtained for our scheme to the
dispersion obtained analytically from the diffusion equation
ix ¼ �k2D or eix ¼ e�k2D; ð34Þ
where D is the diffusivity.
Fig. 1 shows the comparison between the dispersion relationship obtained from the eigenvalues of the operator Pk and Eq.

(34) for a single component with two different relaxation time values.
The unconditional stability of the scheme requires that Pk does not admit an eigenvalue bigger than one for every choice

of k and s. Fig. 1(a) and (c) are representative of the main features observed with this analysis. Stability does not depend on
the choice of relaxation time (when s > 0.5) but the accuracy of the method depends both on the resolution (higher resolu-
tion at small k) and the choice of s (better for small s). Fig. 1(b) and (d) show the order of accuracy of the LBGK method for
single component diffusion. The error on the dispersion equation grows as k4 for any choice of s, showing that the LB method
captures the second order derivatives correctly.

The multicomponent diffusion model can be analyzed in a similar way. For simplicity we investigate the case of two com-
ponents described, respectively, by the evolution equations (7) and (8). We define the post and pre-collision operators fout, fin

and the matrix L
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Fig. 1. Largest eigenvalue of the matrix P as function of the x-component of the wave vector k (ky = kx here) for the diffusion of a single component. For
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difference between the analytical result obtained from the dispersion equation and the results obtained from the numerical scheme. (b) and (d) same plots
for s = 1.5.
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fout ¼

f out
0

..

.

f out
4

gout
0

..

.

gout
4

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; f in ¼

f in
0

..

.

f in
4

gin
0

..

.

gin
4

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; L ¼

Ls;f Lfg

Lgf Ls;g

 !
: ð35Þ
The evolution of the distributions becomes
fout ¼ Lf in
: ð36Þ
The matrix L is now a 2q � 2q matrix (where q is defined by the D2Qq lattice used for the diffusion problem) and where the
diagonal blocks of size q � q are similar to the matrix L of Eq. (28) for each distribution. The elements of the off-diagonal
blocks are
½Lmn�ij ¼
1

smn
� ti

smn
; if i ¼ j;

� ti
smn

; otherwise;

(
where m; n ¼ f ; g: ð37Þ
A discrete Fourier transform leads to the same algebraic equations as for the single component case
Akðt þ dtÞ ¼ PkAkðtÞ: ð38Þ
Pk is defined by
Pk ¼ T�1
k L ð39Þ
with Tk a 2q � 2q diagonal matrix repeating twice the matrix Tk of Eq. (32).
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Similar to the single component diffusion case, the eigenvalues of Pk give the dispersion relation of the LB model and can
be used to check its ability to reproduce Eq. (1).

Calculating the Fourier transform in both space and time of Eq. (1) for two components, gives the following dispersion
relationship
Fig. 2.
Right: E

first an
in the l
det ixþ k2 Df Dfg

Dgf Dg

� 	
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

D

2
6664

3
7775 ¼ 0; ð40Þ
where D is the diffusion matrix. The solutions to this dispersion equation are ix± = �k2k±, with k± the eigenvalues of k2D
k� ¼
1
2

Df þ Dg �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDf � DgÞ2 þ 4DfgDgf

q� 	
: ð41Þ
Note that for uncoupled diffusing species (Dfg = Dgf = 0) the eigenvalues become k+ = Df and k� = Dg, as expected. To compare
this dispersion relation with our lattice Boltzmann model, we compare
expðix�Þ ¼ exp � k2

2
Df þ Dg �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDf � DgÞ2 þ 4DfgDgf

q� 	" #
ð42Þ
with the eigenvalues of Pk, defined in Eq. (39).
Figs. 2 and 3 show dispersion equation (42), together with the two largest eigenvalues of the evolution matrix (Pk) of the

lattice Boltzmann model. Owing to the symmetry of the eigenvalues for k and 2p � k, we show only the first half of the wave
vector values in the left panels. In the right panels, only the first quarter of the wave vector values are shown. We observe
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Fig. 3. Same as Fig. 2 but for other diffusion coefficients and for kx = ky in all cases.
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that the two eigenvalues, which represent the mass conservation in the model, agree with dispersion relation (42) with an
error that grows as k4. The model is therefore in agreement with the partial differential equation up to second order, con-
sistent with our Chapman–Enskog development. As the diffusion coefficients increase, the range of k values for which the
error is ‘‘small” tends to decrease, therefore a larger lattice is required to avoid inaccuracy associated with small
wavelengths.

The stability of the model can be investigated with a similar approach. The two-component coupled diffusion equation
becomes ill-defined if the eigenvalues of D are negative. This necessary condition leads to the constraint
Df þ Dg �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDf � DgÞ2 þ 4DfgDgf

q� 	� �
> 0: ð43Þ
The cross-diffusion coefficients must therefore be small enough compared to the diagonal terms.
In what follows we shall restrict ourselves to the case where Df = Dg = D and Dfg = Dgf. Then condition (43) reduces to

D > jDfgj. This constraint can be translated to the space of the relaxation frequencies. From Eqs. (25) and (26) we obtain
xf ¼ xg ¼
Df =e2

s þ 1=2

Df =e2
s þ 1=2

� �2 � Dfg=e2
s

� �2 ð44Þ
and
xfg ¼ xgf ¼
�Dfg=e2

s

Df =e2
s þ 1=2

� �2 � Dfg=e2
s

� �2 : ð45Þ
Since Df is positive, the condition Df > jDfgj ensures that the denominators of (44) and (45) are strictly positive. Therefore we
have
xf > 0; xf > jxfg j: ð46Þ
From Eq. (25), we can also obtain the inverse relations
Df ¼ e2
s dt

wf

x2
f �x2

fg

� 1
2

 !
; Dfg ¼ e2

s dt
wfg

x2
f �x2

fg

 !
: ð47Þ
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Since xf > jxfgj, we have x2
f �x2

fg > 0 and the condition Df > jDfgj can be expressed in terms of xf and xfg as
Fig. 4.
shaded
The wh
1þ 2e
�

x2
f � 2xf þ 2jxfg j �x2

fg < 0: ð48Þ
This relation can be easily solved for xf and we obtain the conditions
xfg < xf < 2�xfg ; if xfg > 0;
�xfg < xf < 2þxfg ; if xfg < 0:

ð49Þ
Since xf > 0, condition (49) imposes that jxfgj < 1. In the case where xfg = 0, we recover the general condition 0 < xf < 2. The
presence of the coupling between the two species therefore reduces the range of acceptable xf by jxfgj on both sides of the
interval. The x-domain defined by Eq. (49) and representing the physical restriction Df > jDfgj is illustrated in Fig. 4.

The numerical stability of the lattice Boltzmann algorithm was tested by scanning the region given by Eq. (49) for all per-
mitted values of xfg and xf, with a resolution of 0.01 for xf and 0.1 for xfg. For each of these values, the eigenvalues of Pk

have been computed numerically, for all wave vectors with kx = ky, 0 6 kx 6 2p. None of these eigenvalues have been found to
be greater than 1. This shows that for this particular choice of diffusion matrix, the lattice Boltzmann multicomponent dif-
fusion model is unconditionally stable.

To compare the stability field of the present LB method against finite-differences (FD), we discretize Eq. (1) to second or-
der in space, setting the timestep dt and gridspacing dx to unity and simplifying the notation by omitting the spatial or tem-
poral dependence of the variable when not necessary. Eq. (1) becomes
Cðt þ 1Þ � CðtÞ ¼ D
C1ðxþ 1; yÞ þ C1ðx� 1; yÞ þ C1ðx; yþ 1Þ þ C1ðx; y� 1Þ � 4C1

C2ðxþ 1; yÞ þ C2ðx� 1; yÞ þ C2ðx; yþ 1Þ þ C2ðx; y� 1Þ � 4C2

� 	
; ð50Þ
were C is a vector with two components, C1 and C2. Taking the Fourier transform of this equation, we obtain the dispersion
relation for the FD scheme
expðix�Þ ¼ 1þ 2ðcosðkxÞ þ cosðkyÞ � 2Þk�: ð51Þ
k±are the eigenvalues of D given by Eq. (41).
The stability of the FD scheme requires �1 < expðix�Þ 6 1, thus
0 6 k� <
1
4
: ð52Þ
The above relation introduces constraints on the possible values of the diffusion coefficients. For the case we consider here in
more detail, namely Df = Dg and Dfg = Dgf, the stability of the FD scheme requires
0 6 Df � Dfg <
1
4
: ð53Þ
In order to compare this range of stability with that of our LB model, we express the limits (53) in the space of the relaxation
frequencies xf and xfg, using Eqs. (44) and (45).
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The stability region (53) is shown as a dark shaded area on Fig. 4. Note that the stability of the FD scheme was tested
numerically and found to be in perfect agreement with Eq. (52). The FD scheme has a narrower region of stability than
our LB model, at least for this particular case. The stability regions of the two algorithms can be tested analogously for other
choices of diffusion matrices (non-symmetric ones and/or with Df – Dg) but generalizing is beyond the scope of the present
study.
4. Lattice Boltzmann model for advection and coupled diffusion

Advection–diffusion models developed with the lattice Boltzmann method have been used to solve a wide variety of
problems over the last decade, from thermo-hydrodynamics to reaction in porous media [21,19]. The method we use here
is based on the multiple distribution model [33,14,4], where the hydrodynamics is solved by a conventional BGK equation
[30] on a D2Q9 lattice with nine velocity vectors ci (connecting nearest and second nearest neighbors, and with c0 = 0)
fiðxþ ci; t þ 1Þ ¼ ð1�xf Þfiðx; tÞ þxf f 0
i ðx; tÞ: ð54Þ
The equilibrium distribution f 0
i for the flow field is now given by [30]
f 0
i ¼ qt	i 1þ 3u � ci þ

9
2
ðu � ciÞ2 �

3
2

u � u
� 	

; ð55Þ
where the weights are t	0 ¼ 16=36; t	i ¼ 4=36 for i = 1, 2, 3, 4 and t	i ¼ 1=36 for i = 5, 6, 7, 8 and q is the local value of the
density field. The density and momentum are obtained through the first two moments of the distribution fi
q ¼
X

i

fi ¼
X

i

f 0
i ; qu ¼

X
i

fici ¼
X

i

f 0
i ci: ð56Þ
In this model, the kinematic viscosity m and pressure p are given by
m ¼ 1
3

1
xf
� 1

2

� 	
; p ¼ 1

3
q: ð57Þ
The advection–diffusion equations for each of the p diffusing components are described by the set of p equations
gp
i ðxþ ei; t þ 1Þ ¼ ð1�xpÞgp

i ðx; tÞ þxpgp0
i ðx; tÞ: ð58Þ
The multiple distribution method permits different lattice topologies for the different sets of distributions. While we use a
D2Q9 lattice for fi, a D2Q5 topology (with e0 = 0) is sufficient for the gp

i . The distributions fi and gp
i are coupled through the

equilibrium distribution gp0
i , which now becomes
gp0
i ¼ Cpti 1þ 3u � ei þOðu2Þ

� �
: ð59Þ
For D2Q5, the weights ti are again 1/3 and 1/6, respectively for i = 0 and i – 0, e2
s ¼ 1=3. The local concentration of component

p is Cp and u is the local velocity field, as obtained from Eqs. (54) and (56). The choice of an equilibrium distribution depend-
ing linearly on the macroscopic field is common but introduces a numerical diffusivity that depends quadratically on the
velocity u [11,32,4]. In all following calculations, the Mach number is everywhere 
1 so that this effect is expected to be
negligible.

As in the previous section, the diffusivity for component p is found to be
Dpp ¼
1
3

1
xp
� 1

2

� 	
: ð60Þ
We modify the BGK dynamics of Eq. (58) to include the extra non-diagonal diffusive terms in a procedure similar to that
presented in Section 3. The new BGK equations for the evolution of the distributions gp

i become
gp
i ðxþ ei; t þ 1Þ ¼ ð1�xpÞgp

i ðx; tÞ þxpgp0
i ðx; tÞ �

X
k–p

xpk �gk0
i ðx; tÞ � gk

i ðx; tÞ
� �

; ð61Þ
where the equilibrium distribution for the non-diagonal terms �gk0
i are given by the equilibrium distribution defined in Eq.

(9). It can be shown by a Chapman–Enskog expansion that, at low Mach number, Eqs. (61) and (54) lead to the following
set of macroscopic equations
@u
@t
þ ðu � rÞu ¼ � 1

q
rpþ mr2u;

@Cp

@t
þ u � rCp ¼ Dppr2Cp þ

X
k–p

Dpkr2Ck

ð62Þ
with the diffusion matrix Dkl given by Eq. (24).
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The present LBGK model for multicomponent diffusion can be modified to incorporate some features that improve accu-
racy. Ginzburg [11] presents an approach based on the equilibrium distribution model (E-model). In the context of the two
relaxation time (TRT) collision operator, the two eigenvalues can be chosen to optimize the accuracy of the model, cancel
numerical diffusion and reduce higher order correction terms. However, for the D2Q5 lattice we use in this study, the lack
of diagonal velocity distribution does not allow us to cancel cross-diagonal terms of numerical diffusion [32]. Servan-Camas
and Tsai [32] showed, however, that using pseudo-velocities the numerical diffusivity of the scheme can be reduced from
first to second order in time. An in depth analysis of numerical diffusion is not within the scope of this study, but the
two approaches proposed by Ginzburg [11] and Servan-Camas and Tsai [32] can be implemented for any choice of collision
operator including the model presented here.
4.1. Boundary conditions

In the next section we will present some applications of our model. These applications require us to define proper bound-
ary conditions at the limit of the computational domain. For the sake of illustration, we have only implemented basic bound-
ary conditions that we briefly describe below. Our multicomponent diffusion LBGK model is compatible with more
sophisticated boundary conditions.

In Section 5.3, the upper boundary condition for the advected scalar fields is a prescribed concentration for sodium (Na).
We implement this Dirichlet boundary condition by setting the unknown distribution g4 at the boundary node
g4ðwallÞ ¼ CðwallÞ �
X
j–4

gjðwallÞ: ð63Þ
The constant flux rnJ = 0 normal to boundary at the inlet and outlet of the domain in Section 5.2 are set by a finite
difference approximation for the gradient of the concentration obtained by the non-equilibrium part of the distributions
g’s (Eq. (5)).

Otherwise, we use a standard bounce-back condition at solid–liquid boundaries to ensure no-slip boundary conditions for
the hydrodynamic distributions fi and for the zero normal flux condition on solid boundaries for the diffusing species (gi).
This choice of boundary condition offers the advantage of simplicity, however it carries several disadvantages. First, it con-
strains the position of the solid–liquid interface to be halfway between the nodes, a condition that is not generally respected
in the case of boundaries not aligned with the axis of the lattice. The second issue associated with our choice of boundary
conditions (bounce-back for the zero normal flux for the scalar fields) is problematic for the tangential part of the flux. As
noted by Drazer and Koplik [5], Zhang et al. [39] and Ginzburg [12], the bounce-back of the incoming distribution at a bound-
ary results in a zero tangential flux condition which is not physical because of the allowed diffusive flux along the boundary.
Nevertheless, the bounce-back of a scalar field (for example temperature) has been used extensively for adiabatic boundary
conditions [22,36,37].

The treatment of boundary conditions in a more sophisticated way to correct for the inaccuracy of the effective wall posi-
tion is independent of the scheme that we present here as the model can be used to implement any type of boundary con-
ditions. For instance, the model presented in this study (summarized in Eq. (6)) can be generalized to be compatible with the
multi-reflection condition for the anti-symmetric part of the equilibrium distributions developed by Ginzburg [12] to allow
for a better treatment of the tangential flux condition along a solid boundary. The implementation of the boundary condi-
tions presented in Ginzburg [12] does not depend on the choice of collision operator and therefore can be readily included in
the present multicomponent advection–diffusion model.

The scope of this study is to present a new, straight-forward algorithm to solve for multicomponent coupled diffusion.
The goal of Sections 5.2 and 5.3 is to illustrate the potential of the method for advection–diffusion problems.
5. Results

5.1. Diffusion coupling in one dimension

We first validate the results obtained with our lattice Boltzmann model without advection. We model the simple case
where two components C1 and C2 diffuse. C1 is coupled to C2 via a finite diffusivity D12 (D21 = 0). We compare our results
to those obtained with an explicit finite-difference code. We use a grid with 50 nodes, grid spacing dx = 1/50, time step
dt = 10�6. The left and right boundaries have fixed concentrations. An excellent agreement is found between the two
methods over a wide range of D12 (see Fig. 5(a)–(c)). For example the two tests shown in Fig. 5(a) and (b) correspond
to ratios of maximum diagonal versus non-diagonal diffusivities Dmax

ii =Dij; i – j
� �

of 0.5 and 10, respectively. Note that
when D21 = 0, Eq. (41) shows that the two eigenvalues are D11 and D22 and then Eq. (52) does not set limits on the ratio
Dii/Dij.

The model was also tested successfully for the case where x12 < 0, to model an opposite coupling that can arise, for exam-
ple, in the case of the diffusion of two oppositely charged constituents under the requirement of local charge conservation
(see Fig. 5(c)).
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5.2. Coupled advection and diffusion in complex geometries

The problem of the flow of a solution along a reactive surface has a wide variety of applications especially in biology and
geosciences. In water, dissolved salts are found in the form of charged ions and their transport can be coupled because of
local charge conservation or because they diffuse as compounds. Felmy and Weare [8,9] studied the case of sodium diffusing
from a salt diapir into motionless seawater (no advection). They investigated the effects of the non-diagonal couplings of the
diffusion matrix for the system Na+, K+, Ca2+, Mg2+ and SO2�

4 , where they use the diffusivities listed in Table 1.
We illustrate the possibilities offered by this new lattice Boltzmann scheme with a simple example of coupled diffusion in

a porous medium in two dimensions.
We compare results for different Peclet numbers (uDd/DNa, where uD is the Darcy velocity, d is the diameter of the solid

particles in the porous medium) and show the conjugate effects of dispersion and coupled diffusion in the distribution of
ions from an initial circular source. Again, we neglect the dependence of the diffusivities on the concentration of the different
Table 1
Diffusion matrix for Na, K, Ca, Mg and SO4 in seawater in 10�5 cm2/s. Jp represents the flux of component p. From Felmy and Weare [8,9], Ingebritsen and
Sanford [20].

rNa rK rCa rMg rSO4

JNa 1.398 0.015 0.729 0.805 �0.754
JK 0.007 1.793 0.023 0.026 �0.037
JCa 0.007 0.002 0.604 0.023 �0.046
JMg 0.023 0.008 0.076 0.575 �0.108
JSO4

�0.015 �0.026 �0.16 �0.113 0.833
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components. The problem we use is inspired from the problem studied by Felmy and Weare [8,9]. However, we allow sea-
water to flow (from left to right) because of a fixed pressure gradient. We initially set a circular pocket of a solution ten times
more concentrated in Na than the seawater at the center of the domain (same concentration for the other components). The
geometry of the problem is illustrated in Fig. 6.
Fig. 6. Set-up for the advection-coupled diffusion calculations. The grid used in the calculations is 200 by 163.

Table 2
Molarities used for the calculations. From Felmy and Weare [8,9], Ingebritsen and Sanford [20].

Na K Ca Mg SO4

Na-rich solution 5.305 0.0106 0.0107 0.055 0.0293
Seawater 0.5 0.0106 0.0107 0.055 0.0293

Fig. 7. Concentration of the different ions for Pe = 0.322 at four different dimensionless times (h = DNat/L2). See the text for more details.



Fig. 9. Magnitude of the velocity field (upper left), and Na concentrations (with superposed streamlines) for Pe = 0.322, 1.07 and 3.22 at dimensionless time
h = DNat/L2 = 7.3 � 10�4.

Fig. 8. Concentration of the different ions for Pe = 3.22 at four different dimensionless times (h = DNat/L2). See the text for more details.
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The upper and lower boundary conditions are set to no-slip and no-flux with respect to concentration. The no-slip bound-
ary conditions on the solid matrix, upper and lower boundaries are obtained by a bounce-back of the density distributions.
The left and right boundaries are fixed to a constant flux with respect to concentrations. For the fluid, the right boundary
condition is a fixed pressure, lower than the left side to set up a small pressure gradient and consequently a flow from left
to right. The pressure gradient is set-up so that the Reynolds number (ratio of inertial forces over viscous forces) is smaller
than 1 (about 10�1 for the porous media flow). The initial concentrations are given in Table 2. The calculations are performed
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details.
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on a grid of 200 � 163 nodes. The results are shown in Fig. 7 for Pe = 0.322 and Fig. 8 for Pe = 3.22. The solid fraction in the
porous media is assumed to be inert with respect to diffusion reflecting the difference of timescales between diffusion in a
solid and in a solution (several orders of magnitude). Each column shows the concentration of a different ion at four different
dimensionless times h (where h = DNat/L2, L is the horizontal length of the computational domain). As the initial Na-rich cir-
cular region and the seawater had the same initial concentrations for K, Ca, Mg and SO4, the variations of concentration for
these ions are the consequence of the non-diagonal terms of the diffusion matrix (the coupling with Na). It is also important
to note that due to coupling, the distribution of every cation is positively correlated to Na and SO4 is anti-correlated as ex-
pected from charge balance (element of diffusion matrix with opposite sign).

Fig. 8 shows the same temporal evolution for Pe = 3.22. The distribution of ions extends over a broader region and as ex-
pected from the increased contribution of advection, the approximate radial symmetry observed for Pe = 0.322 is broken.
Fig. 9 allows us to better appreciate the importance of the Peclet number in the distribution of Na, showing the flow field
and the Na concentrations at the same dimensionless time (h = 7.3 � 10�4) for three different Peclet numbers (0.322, 1.07
and 3.22). The streamlines of the flow field are superposed on the concentrations to show that the concentration becomes
better correlated with the flow field as the Peclet number increases.

Fig. 10 shows the horizontally-averaged vertical profiles of concentrations for each ion for Pe = 0.322, 1.07 and 3.22 at
h = 7.3 � 10�4. Although the overall direction of the flow field set-up by the imposed pressure gradient is perpendicular
to the profiles, dispersion effects due to the tortuosity of the flow paths around the solid particles are responsible for the
wider distribution of Na observed for Pe = 3.22. SO4 is again anti- correlated with the cations. The complexity of the profiles
is due to the complexity of the dispersion effect due to the solid particles, which act both as an insulating boundary condition
for the different ions and disturbs the flow field.
Fig. 11. Convection due to concentration differences. The upper plot illustrates the set-up of the simulation. As for the previous calculations, Na is the only
component with any initial gradient in concentration. The buoyancy force is linearly proportional to the amount of salt dissolved (see text for more details).
The evolution of the system is shown for four different dimensionless times h = DNat/Ly, where Ly is now the vertical dimension of the computational
domain.
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5.3. Coupled convection and diffusion

In the case of seawater in contact with a salt diapir (NaCl), the dissolution and transport of dissolved Na from the bound-
ary increases the density of the solution and can lead to compositional convection (where the buoyancy is due to composi-
tion differences). Here, we investigate the effect of coupled diffusion on haline convection and the evolution of the
distribution of different ions dissolved in seawater. As for the previous example, Na is the only ion with an initial gradient.
We set the composition of the salt diapir equal to the composition of the Na-rich pocket of solution, as in the previous section
(see Table 2). The fluid is initially at rest. The dissolution of NaCl and redistribution of ions lead to a buoyancy force
Dqg ¼ q0g
X

k

mk Ck � Csw
k

� �
; ð64Þ
where q0 is the density of seawater, g is the acceleration due to gravity, mk is the molar mass fraction of the component k and
Ck � Csw

k

� �
is the concentration difference of ion k between the solution and seawater. As Na+ is the only ion with an initial

gradient, we define the Rayleigh number in this case by
RaNa ¼
DqNagL3

y

lDNa
: ð65Þ
DqNa is the density difference due only to Na, Ly is the vertical dimension of the computational domain, l is the dynamic
viscosity of seawater (here assumed constant) and DNa the diagonal component of the diffusion matrix for Na.

Fig. 11 shows the set-up for the calculation (top) and the velocity and concentration distributions at four different dimension-
less times h ¼ DNat=L2

y . The Rayleigh number for this calculation is about 2.9 � 106. Again, diffusive coupling between the differ-
ent ions and Na is responsible for the redistribution of K, Ca, Mg and SO4. K, Ca and Mg are concentrated ahead of the Na diffusion
front, where Na gradients are the largest. The negative correlation between Na+ and SO2�

4 is again clearly observable.

6. Conclusions

Multiple component diffusion is ubiquitous in most transport processes. When the different diffusing species interact
(through their charge for ions, or as compounds–molecules) the diffusion problem becomes more complicated because of
the coupling that arises between the different species. These couplings lead to non-diagonal terms in the diffusion matrix
that can be significant in the transport of components and properties of the diffusing media (rheology, electrical conductivity
to cite a few).

We present a new lattice Boltzmann (LB) method that includes the effect of diffusion coupling in both diffusion and advec-
tion–diffusion problems. We first analyzed this new model in a theoretical way, discussing its stability and accuracy. With both
a Chapman–Enskog expansion and an investigation of the eigenvalue of the LB evolution operator, we showed that, up to deriv-
atives of order higher than two, our model reproduces multicomponent diffusion. Unconditional numerical stability has been
demonstrated for a particular class of diffusion matrices. Numerical experiments suggests that stability is probably maintained
in more general situations. However, with advection we showed that we may no longer expect unconditional stability.

In a second step, we tested numerically the model for several applications. For the diffusion of two coupled components
in one dimension, we compared our results with an explicit finite difference code. The results are in excellent agreement for
a wide range of the ratio Dmax

ii =Dij, with (i – j).
We then apply the advection–diffusion model to the problem of flow in a porous medium where we introduce a circular

Na-rich region in the solution (seawater). Although the solution (seawater) and the Na-rich region are initially at equilibrium
with respect to the other diffusing species, their coupling with Na drives them out of equilibrium and results in regions with
high concentrations in K, Ca, Mg and SO4. The SO4 anion has an opposite charge and because of charge conservation (negative
coupling), its distribution becomes anti-correlated with the distribution of the other ions. This example illustrates the poten-
tial of this model to solve coupled diffusion problems with fluid flow in complex geometries in a straight-forward way.
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Appendix A. Stability of the single component diffusion model – ‘‘Energy’’ approach

In this section we prove the stability of the lattice Boltzmann BGK model (LBGK) for the diffusion of a single component.
Our approach is based on the conservation of a positive-defined function reminiscent of an energy. To simplify the notation,
we rewrite Eq. (2) as
f out
i ¼ fi þ

1
s

f eq
i � fi
� �

; ðA:1Þ
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where fout denotes the post collision distribution functions and f = fin the pre-collision ones, s = 1/x and
f eq
i ¼ tiC; C ¼

X
i

fi: ðA:2Þ
The lattice weights are positive and obey again
X
i

ti ¼ 1;
X

i

tiv iav ib ¼ c2
s dab: ðA:3Þ
It is well known that the LBGK diffusion model predicts a diffusion coefficient
D ¼ dtc2
s s� 1

2

� 	
:

Using Eq. (A.2), the LBGK equation reads
f out
i ¼ ti

s
C þ 1� 1

s

� 	
fi: ðA:4Þ
We assume that the lattice weights are all identical for i – 0
ti ¼ t; if i – 0: ðA:5Þ
Therefore we have
X
i

ti ¼ t0 þ zt ¼ 1; ðA:6Þ
where z is the lattice coordination number, i.e. the number of non-zero velocities.
We define an ‘‘energy” E as
E ¼

t
t0
ðf0Þ2 þ

P
iP1
ðfiÞ2; if t0 – 0;

P
iP1
ðfiÞ2; if t0 ¼ 0:

8><
>: ðA:7Þ
From Eq. (A.4) we can now compute (for the case t0 – 0)
Eout ¼ t
t0

f out
0

� �2 þ
X
iP1

f out
i

� �2

¼ t
t0

t2
0

s2 C2 þ 2
t0

s
1� 1

s

� 	
Cf0 þ 1� 1

s

� 	2

f 2
0

" #
þ
X
iP1

t2

s2 C2 þ 2t
s

1� 1
s

� 	
Cfi þ 1� 1

s

� 	2

f 2
i

" #

¼ 1� 1
s

� 	2 t
t0

f 2
0 þ

X
iP1

f 2
i

" #
þ tt0

s2 þ z
t2

s2

� 	
C2 þ 2

t
s

1� 1
s

� 	
Cf0 þ 2

t
s

1� 1
s

� 	
C
X
iP0

fi: ðA:8Þ
Recalling that
X
iP1

fi ¼ C � f0;
we can write
Eout ¼ 1� 1
s

� 	2

Ein þ t
s2 ðt0 þ zt þ 2s� 2ÞC2 þ 2

t
s

1� 1
s

� 	
Cf0 � 2

t
s

1� 1
s

� 	
Cf0: ðA:9Þ
With t0 + zt = 1 we finally obtain
Eout ¼ 1� 1
s

� 	2

Ein þ t
s2 ð2s� 1ÞC2: ðA:10Þ
Eq. (A.10) is also satisfied in a model without a rest population, when t0 = 0 and f0 = 0.
We also observe that
1� 1� 1
s

� 	2

¼ 1� 1� 2
s
þ 1

s2

� 	
¼ 2

s
� 1

s2 ¼
2s� 1

s2 :
Therefore Eq. (A.10) becomes
Eout ¼ 1� 1
s

� 	2

Ein þ t 1� 1� 1
s

� 	2

C2

" #
: ðA:11Þ
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Since C is conserved by the collision rule, we have
Cout ¼ Cin
and Eq. (A.11) can be written as
Sout � Eout � tðCoutÞ2 ¼ 1� 1
s

� 	2

½Ein � tðCinÞ2� � 1� 1
s

� 	2

Sin: ðA:12Þ
We note that the conservation law (A.12) is only obeyed for a lattice satisfying Eq. (A.6).
For 1/2 6 s <1, we have
1� 1
s

� 	2

6 1: ðA:13Þ
Below we will show that S cannot be negative, for any values of the fi’s. For now let us assume that S P 0. Then Eqs. (A.12)
and (A.13) impose
Eout � tC2
6 Ein � tC2:
Thus Eout
6 Ein and the f’s are bound and the method is unconditionally stable for every choice of relaxation time s > 1/2.

Let us now show that
S � E� tC2 ¼ t
t0

f 2
0 þ

X
i>0

f 2
i � t

X
i;j

fifj P 0; ðA:14Þ
for all values of f. We consider the case with and without rest particles.

A.1. Lattices with no rest particles

For lattice topologies with no rest velocity (such as D2Q4, for example), we have t = 1/z and S reduces to
S ¼
Xz

i¼1

f 2
i � t

Xz

i;j¼1

fifj: ðA:15Þ
For any real values fi and fj, we have
ðfi � fjÞ2 P 0 ðA:16Þ
and then
fifj 6
1
2

f 2
i þ f 2

j

� �
: ðA:17Þ
Summing over all velocities twice (for i and j) we get
Xz

i;j¼1

fifj 6
z
2

Xz

i¼1

f 2
i þ

Xz

j¼1

f 2
j

 !
: ðA:18Þ
Therefore,
1
z

X
i;j

fifj 6
X

i

f 2
i ðA:19Þ
and, with t = 1/z, this shows that S P 0.

A.2. Lattices with rest particles

Eq. (A.14) can be written as S = fTAf, where the matrix A is
A ¼ t

1
t0
� 1 �1 . . . �1

�1 1
t � 1 . . . �1

. . . . . . . . . . . .

�1 . . . �1 1
t � 1

0
BBBB@

1
CCCCA ðA:20Þ
and the vectors f and fT are respectively the vector containing the z + 1 velocity distributions and its transpose. If A is a po-
sitive semi-definite matrix, i.e. fTAf P 0 for all choices of f’s, then S P 0 and the method is unconditionally stable for s > 1/2.
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Since A is real and symmetric, it can be diagonalized and the condition S P 0 reduces to having all the eigenvalues of
AkA P 0.

For D2Q3, D2Q5, D2Q9 and D3Q7, the eigenvalues of A are found to be
k1 ¼ 1 with multiplicity z� 1;

k� ¼
t þ t0 � ðzþ 1Þtt0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt þ t0 � ðzþ 1Þtt0Þ2 � 4t0 �t þ zt2 þ tt0

� �q
2t0

:

ðA:21Þ
Using t0 = 1 � zt, k� reduces to 0 and k+ to
kþ ¼ 1þ t
t0
� ðzþ 1Þt:
To show that k+ is always positive we have to show that
1
t
þ 1

t0
> zþ 1:
This is true because we always have t < 1/z and t0 < 1. Then, 1/t > z and 1/t0 > 1 and we prove the unconditional stability of the
single component LBGK diffusion model.

Appendix B. Loss of unconditional stability of the single component advection–diffusion model – ‘‘Energy’’ approach

The stability conditions for the single component advection–diffusion scheme have been investigated by Suga [35], Ser-
van-Camas and Tsai [32]. In the following section, in the context of Appendix A, we illustrate the loss of unconditional sta-
bility. In this case, the different equilibrium distribution leads to an ‘‘energy” conservation equation with additional terms
(compared to Eq. (A.12))
Eout � tC2 ¼ 1� 1
s

� 	2

ðEin � tC2Þ þ t

sC2
s

q½qu2 þ 2 1� 1
s

� 	
u � J�: ðB:1Þ
The last two terms of Eq. (B.1) cancel for u = 0 and the stability condition reduces to the case of pure diffusion as expected. In
Eq. (B.1) the flux of component C is given by
J ¼ �DrC þ uC: ðB:2Þ
Eq. (B.1) shows the loss of unconditional stability for the advection–diffusion scheme, even for a single component, as the
velocity field can be such that Eout > Ein locally.
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